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I. INTRODUCTION

There has been some recent work to develop two and three-dimensional alternating direction
implicit (ADI) FDTD schemes [1]–[4]. These ADI schemes are based upon the original ADI concept
developed by Peaceman and Rachford [5] and Douglas and Gunn [6], which is a popular solution
method in Computational Fluid Dynamics (CFD). These ADI schemes work well and they require
solution of a tridiagonal system of equations. A new approach proposed in this paper applies a
LU/AF approximate factorization technique from CFD to Maxwell’s equations in flux conservative
form for one space dimension. The result is a scheme that will retain its unconditional stability in
three space dimensions, but does not require the solution of tridiagonal systems. The theory for this
new algorithm is outlined in a one-dimensional context for clarity. An extension to two and three-
dimensional cases is discussed in [7]. Results of Fourier analysis are discussed for both stability and
dispersion/damping properties of the algorithm. Results are presented for a one-dimensional model
problem, and the explicit FDTD algorithm is chosen as a convenient reference for comparison.

II. ONE-DIMENSIONAL LU/AF ALGORITHM

To develop the one-dimensional LU/AF algorithm, Maxwell’s equations for the one-dimensional
TE mode are written in flux conservative form to include the electric and magnetic conduction
currents as
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T and T denotes transpose. To develop the upwind LU/AF
algorithm, the flux conservative form of Maxwell’s equations in (1) is recast in the following form
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where �A is the Jacobian of �f = �A�q and is given by
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The matrix �A has eigenvalues �1;2 = �1=
p
�� corresponding to right and left propagating waves

with speeds �c. The eigenvalue matrix is given by

�� =

�
�1 0

0 �2

�
(5)

The matrix �A can be obtained from the eigenvalue matrix via a similarity transformation given by
�A = �S �� �S�1 where the matrix �S is composed of the eigenvectors of �A The eigenvalue matrix
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�� can be split into two parts, one each for the right and left propagating waves and is given by
�� = ��+ + ���. Using this relation, we can split �A into two parts as �A� = �S��� �S�1. The flux
vector �f is then split into two parts given by �f = �f+ + �f� and the relation �f� = �A��q. For
more details on this development, see reference [7]. This flux-vector-splitting method is similar to
that developed by Steger and Warming [8] for the Euler equations governing inviscid fluid flow. To
construct the LU/AF algorithm, time and space are discretized to tn = n�t, xi = i�x and the time
derivative in (3) is approximated by a �-weighted, O(�t 2) difference equation given by
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The spatial derivative is again replaced by a �-weighted average between time level n + 1 and n.
This can be rewritten using the operator notation as
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The ��

2i
operators are now O(�x2) difference operators to be defined shortly. The parameter � can

be used to construct a series of explicit and implicit schemes. For example, if � = 0, this results in a
leapfrog scheme; � = 0:5 results in a Crank-Nicolson scheme and � = 1 results in an Euler implicit
scheme. Using (6) and (7), the finite-difference equation for (3) is
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This can be rearranged as�
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with � � 1=(2�+1). The difference operators in the residual are replaced byO(�x 2) backward and
forward upwind difference operators on three-point one-sided stencils defined by
�
�
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Equation (9) is an O(�t2;�x2), unfactored, upwind scheme for electromagnetics. The LU/AF
scheme is defined by factoring the left side of (9) into two operators, each designed for a forward
and backward grid sweep as in the first order implementation. The LU/AF scheme is then given by�
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III. FOURIER ANALYSIS

A Fourier analysis shows that both the first and second-order upwind LU/AF algorithms are un-
conditionally stable for � � 1=2, and that they contain both numerical dissipation (or damping)
and dispersion. The dissipation is present due to even order spatial derivatives in the truncation
error which are a result of the upwind approximation. The complete Fourier analysis for dispersion
and damping errors showed that the LU/AF algorithm has larger dispersion errors than the explicit
FDTD method for � � 1. This is not particularly troublesome, because for � � 1, explicit schemes
are generally more efficient and are preferred. However, for � > 1, explicit schemes cannot be used
and the LU/AF algorithm has its lowest dispersion error around � = 2. The results also showed that
the lowest numerical dispersion is obtained when � = 1=2. The dispersive errors also increased with
� and �. Since the LU/AF method uses windward differencing, numerical dissipation (or damping)
is present in the solution. The dissipation is very small using a second-order LU/AF algorithm, and
it decreases as the grid resolution is increased or as � is increased.



IV. BOUNDARY CONDITIONS

A. Outer Radiation Boundary Condition

The characteristic based LU/AF method requires no extraneous boundary condition such as the
Liao absorbing boundary condition [9] or the PML [10]. The only additional information required
is information about waves that are entering the domain. Waves exiting the domain are naturally
handled by the interior point algorithm. Therefore, the characteristic boundary conditions are im-
plemented as follows: at grid point i = 0, equation (12) is used along with a specification of the
incoming, right-going flux, f +0 . At grid point i = imax, equation (11) is used along with a speci-
fication of the incoming, left-going flux, f �

imax
. The only additional information introduced at the

boundary is nothing more than what is required by the physical system. In multidimensional prob-
lems, the local coordinates at the outer boundaries are rotated to align with the direction of wave
propagation defined by �E � �H . The characteristic equations are developed along this direction and
are appropriately applied at the boundaries. This procedure was discussed and outlined by Shang
[11].

B. Dielectric Surface Boundary Condition

Since the LU/AF scheme follows the direction of information propagation (i.e. the characteristic),
at a material interface, the slope of the characteristic curve (i.e. the speed of light in the material)
changes. Therefore, for the LU/AF method to be widely applicable, a careful treatment of material
interfaces is required. With a material boundary in place, the right-going and left-going character-
istics see a change in characteristic speeds, and therefore, a material interface condition needs to be
implemented to correctly model the physics. This feature was recently developed and is outlined in
[12].

V. RESULTS

The second-order LU/AF algorithm was tested by implementing equations (11) and (12) for inte-
rior grid points away from absorbing boundaries and a first-order scheme at grid points next to the
absorbing boundaries. Characteristic-based boundary conditions were used to terminate the com-
putational domain and the incoming flux (f �

imax
) at the right boundary was set to zero. The code

was initialized by writing a time snapshot of a propagating pulse in the grid. A standard Gaussian

pulse of the form Eyi = e
�

�
(t�t0)

�

�2
was used as an excitation source. The main parameters of

interest are the time resolution (i.e. number of time steps/period) and the grid resolution (i.e. number
of cells/wavelength) of the highest frequency of interest in any given problem. These parameters
will be designated as Nt and Nx, respectively. The highest frequency of interest, fmax, is calculated
based uponNx and the largest cell size, and the time step for the implicit scheme is calculated based
upon fmax and the desired time resolution, Nt. For the FDTD method, the time step was calculated
based upon the Courant stability condition using the smallest grid size.

0.5
0.55

0.6
0.65

0.7
0.75

0.8
0.85

0.9
0.95

1

0 0.1 0.2 0.3 0.4 0.5R
ef

le
ct

io
n 

co
ef

fic
ie

nt
 m

ag
ni

tu
de

Frequency (GHz)

Exact
FDTD
LU/AF

Fig. 1. Reflection coefficient magnitude versus
frequency for scattering from a lossy dielectric
half-space on a uniform mesh with � = 1=2
and � = 1.

To illustrate the use of the LU/AF scheme for EM
problems, propagation on a uniform mesh and reflec-
tion from a lossy dielectric half-space were considered.
The dielectric interface scheme discussed in Section IV-
B was implemented and the results are compared with the
explicit FDTD method. To solve the reflection problem,
the problem space is a uniform grid with 2000 cells, a cell
size of 1 cm, and it is filled with a lossy dielectric mate-
rial from cell numbers 751-2000. The time step is 33.3
ps and � = 1. The total electric field is recorded versus
time at cell number 750. The incident field is obtained
by running the code with free space only and recording
the field versus time at the same location. The incident
field is subtracted from the total field to give the scattered
field. A point source located at the left boundary of the



grid was used as the excitation source and the dielectric half-space material parameters are � = 4� 0,
� = �0 and � = 0:2 S/m. Figure 1 shows the reflection coefficient results and the agreement is
excellent.

For the propagation problem, the pulse was allowed to propagate for approximtely 50 meters and
periodic boundary conditions were used along with � = 2. Figure 2 shows the error in electric field
for LU/AF method. We see that the results are accurate to within about 1%.
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Fig. 2. Error in electric field versus distance for
free space propagation on a uniform mesh
with � = 1=2 and � = 2.

From additional tests, it was determined that the LU/AF
method produces less accurate results for moderate con-
ductivity values. This is due to the factorization error
terms. As � is increased, the factorization errors become
larger. In principle, this factorization error can be reduced
through iterative error reduction [7]. For perfect conduc-
tors, we simply set �q = 0.

VI. CONCLUSIONS

This paper has introduced an implicit LU/AF FDTD
method for computational electromagnetics. A second-
order accurate, LU/AF, characteristic based algorithm for
electromagnetics has been implemented and tested on one-
dimensional model problems for uniform and nonuniform
grids. The one-dimensional model problem results show
that accurate solutions for wave propagation can be ob-
tained using Courant number greater than one and the

method works well with lossy dielectric materials. The present results demonstrate potential ad-
vantages in a one dimensional context, and this approach appears promising for development of
stable, accurate and efficient implicit LU/AF schemes for complex two and three dimensional appli-
cations. Extensions to two and three-dimensional applications have been outlined [14], but details
of this work will the subject of future reports and articles.
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